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The development of time domain electromagnetic solvers for nonorthogonal grids
is an area of current research interest, stemming from the need to simulate complex
geometries in a wide variety of applications. A notable example is the discrete surface
integral (DSI) algorithm [1], which solves the Maxwell curl equations in the time domain
using a 3d, unstructured, mixed-polyhedral grid. Although this method is an extension of
the time proven Yee [2] algorithm, little is known about the numerical properties of the
method when discretized on these more general grids. Dispersion relations for the DSI
algorithm can be derived using 2d idealized grids, such as the skewed mesh analysis done
by Ray and Rambo [3] for both triangles and quadrilaterals. The present work applies the
same techniques used for the skewed mesh analysis to another idealized, but
nonorthogonal, 2d grid.

The mesh examined here is the regular, periodic "chevron" (herring-bone, cork-
screw, saw-tooth) mesh (see Fig. 1). This mesh is simple enough to be easily analyzed
while still stressing an algorithm's ability to handle nonorthogonal meshes. We consider
the source-free Maxwell's equations in vacuum for waves with electric field E polarized in
the x-y plane and magnetic field B=B ẑ . The plane is periodically tiled with identical
chevron unit cells, shown in Fig. 1, labeled by indices (l,m); the grid is characterized by
∆x, ∆y and the chevron angle ϑ. The locations and vector orientations of the field variables
are also detailed in Fig. 1. The dual grid, which happens to be an orthogonal grid of
rectangles, is shown by dashed lines.

The dispersion analysis proceeds by applying the DSI algorithm to determine the
update equations on the particular grid shown in Fig. 1. Due to the orthogonality of the

dual mesh to the vertical primary edges, the updates for E2 and Ẽ2 are simple differences
of adjacent magnetic fields. The magnetic fields are determined by side length weighted

sums of the surrounding tangential electric fields. Only the components E1 and Ẽ1 are
affected by the nonorthogonality of the mesh. However, applying the DSI prescription
leads to updates for these components in a straight forward manner. Once the update
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equations are known, all field components are expressed as Fourier modes varying as
exp(-iωtn+ik⋅Xl,m), where tn=n∆t, k=kx x̂+ky ŷ  and Xl,m = l (2∆x )x̂ + m ∆y ŷ identifies
each unit cell in the periodic grid. This system of linear equations for the six field
amplitudes may then be solved to obtain the dispersion relation for the chevron grid,
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(1)
Expanding Eq. (1) for small wavenumber confirms convergence with second order
accuracy. For the case of ϑ=0, the usual orthogonal grid dispersion relation is obtained as

expected; this is also true for ϑ≠0 if either kx=0 or ky=0.

With the mesh perturbed (ϑ≠0), the right hand side of Eq. (1) may be negative

leading to complex frequencies, ω=ωr+iγ (ωr and γ both real). This condition for
instability may be expressed as,

tan ϑ > 2
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ctn kx∆x( ) csc ky∆y( ) ,

(2)
which is satisfied for any nonzero ϑ when kx∆x=π/2 (and ky∆y≠0), and is independent of
the time step. Expanding the dispersion relation for small time step with this  condition
satisfied, we find nonzero growth rate (γ>0) for vanishing time step. This is very different
from the usual Courant limit, since it implies that no stable time step exists. As a simple
concrete example, consider a perturbed square mesh, ∆x=∆y≡∆, with the choice

kx∆x=ky∆y=π/2. The growth rate and real part of the frequency in the limit of small time
step are found to be,

γ = c

4∆
tan ϑ , ωr = 2c

∆
.

(3)
(This value for the growth rate is within 4% of the maximum growth rate, which occurs at
ky∆y=1.30).

Numerical tests on chevron grids confirm the presence of this instability. Periodic
2d simulations verify the dispersion relation in detail. Tests performed in 3d, with the
simulation region surrounded by a conducting boundary, also show the growth rate to be
independent of ∆t, proportional to tanϑ , and inversely proportional to the mesh scale
length as predicted. Realistic grids with isolated regions of chevron zones have also been
observed to be unstable.



When applied to the chevron grid investigated here, the DSI algorithm supports
electromagnetic oscillations which are unstable at any time step. Application of the
Modified Finite Volume (MFV) algorithm [4] to this mesh results in identical update
equations, and hence identical dispersion and stability properties. We suspect that other
nonorthogonal grid methods currently in use which are neither dissipative nor provably-
stable [5] may encounter similar difficulties. The impact of this instability on real problems
is difficult to quantify. Any non-trivial mesh will likely contain some chevron zones,
although perhaps only in limited spatial regions. Absorbing boundaries can serve to keep
unstable modes at low, but not necessarily negligible levels. In some instances, mesh
refinement may make the problem more severe, since the growth rate is inversely
proportional to mesh size. For many problems, the growth rate may be small enough to not
affect the solution, however, more work is required to quantify the seriousness of this
instability.
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